液状化現象

提供: miniwiki
2018/8/7/ (火) 23:02時点におけるAdmin (トーク | 投稿記録)による版 (1版 をインポートしました)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先:案内検索


ファイル:Liquefaction at Niigata.JPG
1964年に発生した新潟地震による液状化で大きく傾いた県営川岸町アパート
ファイル:Liquefaction in Peterborough St.JPG
カンタベリー地震による液状化で噴出した泥が駐車場を覆い、車のタイヤの半分が埋まった(2011年2月22日ニュージーランドクライストチャーチ中心部
ファイル:Minatojimanakamachi c184.jpg
阪神・淡路大震災による液状化

液状化現象(えきじょうかげんしょう)は、地震の際に、地下水位の高い地盤振動により液体状になる現象。これにより比重の大きい構造物が埋もれ、倒れたり、地中の比重の小さい構造物(下水道管等)が浮き上がったりする。ゆるく堆積した砂質土層では、標準貫入試験で得られるN値が10程度以下と小さい場合が多い。一般に、液状化現象が生じるかどうかは、FL値、液状化の程度はDcyPL値などの指標を用いて判定する。単に液状化(えきじょうか、: liquefaction[1]ともいう。

なお、この現象は日本国内では新潟地震の時に鉄筋コンクリート製の建物が丸ごと(潰れたり折れたりではない)沈んだり倒れたりしたことで注目されたが、この地震当時は「流砂現象」という呼び方をされていた[2]

概要

実際は、地表付近の含水状態の砂質土が、地震の震動により固体から液体の性質を示すことにより、上部の舗装や構造物などが揚圧力を受け破壊、沈み込みを起こすものである。「流砂」とも呼ばれていた。

砂丘地帯や三角州埋め立て地・旧河川跡や跡・水田跡などの人工的な改変地で発生しやすい。近年、都市化が進んだ地区で該当地域が多いことから被害拡大の影響が懸念される。

1964年昭和39年)6月16日に発生した新潟地震の際、信濃川河畔や新潟空港などで、この現象が発生したことから日本でも知られるところとなる。また同年に発生したアラスカ地震でも液状化による被害が発生し、これ以降土質力学の分野で、活発に研究が行われるようになった。

東京都心部は、河口に位置する上、埋め立て地が多く存在するため、大地震の発生時には液状化対策が施されていない箇所で状化現象が発生し、道路やライフライン、堤防の破損、基礎のしっかりしていない建物の傾斜などの被害が発生する可能性もある。

現在、液状化現象の発生危険箇所をとりまとめたハザードマップが整備されつつあり、堤防の補強などの措置が図られている。ライフラインの被害も懸念されるため、水道管は耐震管に布設替えが進みつつあり、ガス管ポリエチレン化が進んでいる。一方で、下水道管は耐震化が難しく、復旧も遅いため、居住困難な状態が長引く場合がある(2011年の東日本大震災での福島第一原子力発電所免震棟、Jヴィレッジ浦安市いわき市など)。

液状化のプロセス

ファイル:Liquefaction.gif
緩詰めの砂粒子が振動によって液状化する様子(模式図)

砂を多く含む砂質土や砂地盤は、の粒子同士の剪断応力による摩擦によって、地盤は安定を保っている。このような地盤で、地下水位の高い場所もしくは地下水位が何かの要因で上昇した場所で、地震や建設工事などの連続した振動が加わると、その繰り返し剪断によって体積が減少し、間隙水圧が増加し、その結果、有効応力が減少する。これに伴い剪断応力が減少して、これが0になったとき液状化現象が起きる。この時、地盤は急激に耐力を失う。

また、この時、間隙水圧は土被り圧(全応力)に等しい。この状態は波打ち際などで水が押し寄せるまでは、足元がしっかりとしていても水が押し寄せた途端に足元が急に柔らかくなる状態に似ている。また、雨上がりの地面を踏み続けると、地面に水が吹き出てくる状態にも似ていると言える。

地震や建設工事などにより連続した振動が砂地盤等に加わると、液状化現象が生じ、地盤は急激に支持力を失う。建物を地盤に固定する基礎のうち、層や岩盤等の適当な支持層に打ち込む支持と異なる摩擦杭では、建物を支えていた摩擦力を失い、建物が傾く不同沈下を起こす場合がある。重心の高い建物や重心が極度に偏心した建物では、より顕著に不等沈下が生じ、転倒ないし倒壊に至る場合がある。

この転倒は(建物自体が途中で壊れなければ)ゆっくりしたもので、新潟地震で倒れた県営住宅で地震に会った人の証言では、「家はゆっくりと船が沈むように傾き、そのため(建物が横倒しになったのに)けがをせずに済んだ。」という[2]

下層の地盤が砂質土で、表層を粘土質で覆った水田等で液状化が起きた場合は、液状化を起こした砂が表層の粘土を突き破り、水と砂を同時に吹き上げるボイリングEnglish版(噴砂)と呼ぶ現象を起こすことがある。1964年の新潟地震では、県内の各地でボイリングが観測された。

地震に伴って液状化が発生しうる地点の震央距離 R(km)とマグニチュード M の関係は、[math]\log R = 0.77M - 3.6[/math] で表すことができる[3]とされている。

側方流動

ファイル:Soil liquefaction 4,Katori-city,Japan.jpg
液状化による側方流動により川底が埋塞した小野川

側方流動(そくほうりゅうどう、: lateral flowlateral spreading)は、地盤流動現象の1つで、傾斜や段差のある地形で液状化現象が起きた際に、いわゆる泥水状になった地盤が水平方向に移動する現象をいう。

側方流動には大きく分けて2つのタイプがある。1つは、地表面が1 - 2%程度のゆるい勾配になっており、地中部には液状化層が存在するものである。この場合、地盤が傾斜に沿って移動することとなる。もう1つは、護岸などに見られるタイプで、地震の揺れおよび地盤の液状化で護岸などが移動することで、後背の地盤が側方流動を引き起こすものである。

このような側方流動が発生した場合、地中構造物に多大な影響を与える。例えば、杭基礎であれば、側方流動が発生することにより杭は地盤から水平方向にせん断曲げの力を受けることとなる。この地盤からの力が杭の耐力を超過し、杭のせん断破壊等を起こす。このため、杭基礎は上部構造物を支える事ができなくなり、場合によっては構造物の転倒などを引き起こすことにつながっていく。

発生例

日本

ファイル:2011 Tohoku earthquake Soil liquefaction map.png
東北地方太平洋沖地震における液状化現象の発生地点、清水建設のまとめによる。
1858年4月9日(安政5年2月26日) 飛越地震
富山市にて、「井戸から水とともに白砂が吹き出す」、「屋敷の地面が割れて水が吹き出す」等の記録が残る[4]
1964年6月16日 新潟地震
信濃川河畔や新潟空港などで発生した。
1995年1月17日 兵庫県南部地震阪神・淡路大震災
神戸市ポートアイランド六甲アイランドで大規模な液状化現象の発生が確認されている。
2004年10月23日 新潟県中越地震
小千谷市長岡市与板町柏崎市など、水田や湖沼を埋め立てた箇所等で液状化の発生が見られた。
2011年3月11日 東北地方太平洋沖地震東日本大震災
関東地方では1都6県96市町村で液状化被害が確認されている[5]。世界最大の被害になった[6]
2016年4月16日 熊本地震
阿蘇カルデラ内の黒川沿いにおいて、大規模な地盤の移動に伴って液状化や噴砂、側方流動が発生した[7]

日本国外

1906年 サンフランシスコ地震
まだ液状化という用語は用いられていなかったが、それが原因と見られる地盤変状は多く記録され、文書にまとめられている。サンフランシスコエンバカデロEnglish版沿いのフィッシャーマンズ・ワーフ近くの地域、サンフランシスコ湾に沿ったオークランド市を含めた埋め立て地モンテレー湾に沿ったサンタクルーズ市とワトソンビル市と国勢調査指定地域のモスランディングEnglish版など、1989年のロマ・プリータ地震と液状化発生地域の大部分が一致している[8]。その一方で、サンフランシスコ湾南部のアラメダ・クリークEnglish版コヨーテ・クリークEnglish版に沿った地域などのようにサンフランシスコ地震では大規模な液状化が発生したが、ロマ・プリータ地震では液状化が発生しなかった地域もあった[9]。全体の液状化の程度としては地域の一部が液状化しただけの83年後の地震のそれとは比較にならないほどの大規模なものになった[10]
1964年 アラスカ地震
1985年 メキシコ地震
メキシコシティで発生。
1989年 ロマ・プリータ地震
ファイル:LomaPrieta-Marina2.jpg
サンフランシスコ市マリーナ地区。ロマ・プリータ地震が発生した際の液状化によって損傷した歩道
サンフランシスコ市のマリーナ地区English版は地盤の液状化現象が顕著に見られた[11]。地震による被害が特に大きかった建物が集中している地区である[12]。マリーナ地区ではほとんどすべての建物が何らかの被害に見舞われた[13]。この地区の埋め立て地と砂丘砂の地域では地震動の大きさにあまり差はないが、液状化被害の程度は両者で大きく差が開いた[14]。また、同市のマーケット・ストリートの通りに沿った3つの埋め立て地のいずれの地域においても大規模な液状化現象が発生した[15]。比較的新しい埋め立て地であったサンフランシスコ・オークランド・ベイブリッジのオークランド側取り付け部でも大規模な液状化が発生し、地表面での沈下量は最大40㎝にも及んだ[16]サンフランシスコ・ベイエリアではこの他にオークランド国際空港(西側部分)、オークランド港English版アラメダ海軍航空基地English版ベイファーム島English版人工島トレジャー島English版などで大規模な液状化が発生している[17]。また、震源南側地域ではサンタクルーズ市内、ワトソンビル市近郊のパハロ川English版流域、モスランディング(河川に沿った地域や太平洋沿岸)などで大規模な液状化が発生している[18]
2011年 カンタベリー地震
クライストチャーチ市で発生。

対策

以下の対策により、新しく埋め立てられた土地では液状化現象の被害を抑えることができる。

  • サンドコンパクションパイル工法 - 砂を入れて突きかため柱を作り、その上に建築物を載せる(東京ディズニーランドで一番重いシンデレラ城を支えている)。
  • ドレーン工法 - 柱を作り水を抜き液状化を抑え、非常時には水を逃がす。
  • セメントや薬品による地盤改良 ‐ 地盤を改良し固くする。
  • 杭(パイル) - 鉄製またはコンクリート製の杭を支持基盤(N値=50以上が望ましい)まで打ち込む(東京都内で54mという例がある)
  • 建物の接続部分や、ライフラインとの接続部分がずれに弱いので、フレキシブルな構造する。
  • 地下水位低下工法 - 地下水位を強制的に下げることで地震時の液状化現象の発生を抑える。

脚注

  1. 文部省編 『学術用語集 地学編』 日本学術振興会、1984年。
  2. 2.0 2.1 伊佐喬三「9-地球と人間 防災と自然改造」 『原色現代科学大事典2 地球』 株式会社学習研究社、竹内均 責任編集、1967年、P450。
  3. 植竹富一ほか「1828年越後三条地震の地変等の記事について (PDF) 」 、『歴史地震』第20号、歴史地震研究会2005年、 233-242頁、 ISSN 1349-9890NAID 40007024362
  4. 北日本放送株式会社「復刻版越中安政大地震見聞録 立山大鳶崩れの記」地震見聞録 P60,61 2007年
  5. 国土交通省 関東地方整備局 企画部 広域計画課. “東北地方太平洋沖地震による関東地方の地盤液状化現象の実態調査結果について”. 防災. 国土交通省 関東地方整備局. . 2012閲覧.
  6. 大成建設 船原英樹 (2012年3月14日). “1.過去の地震と液状化現象”. 防災. 耐震ネット. . 2016閲覧.
  7. 平成28年熊本地震に関する報告書 第1章~第6章 (PDF)”. 東北大学災害科学国際研究所 (2017年4月). . 2017閲覧.
  8. 建築学会(1991年) pp.142-143
  9. 建築学会(1991年) p.143
  10. 磯山(1989年) p.78
  11. 建築学会(1991年) p.99
  12. レッドファーン(2013年) p.180
  13. 大久保(1990年) p.34
  14. 衣笠(1990年) p.13
  15. 建築学会(1991年) p.132
  16. 建築学会(1991年) p.137
  17. 建築学会(1991年) pp.138-139
  18. 建築学会(1991年) pp.140-142

関連項目

参考文献

外部リンク